かわせみ河原から川の博物館の近年における土砂堆積状況に関する考察

森 圭子（川の博物館）

はじめに

2019年10月12日，後に令和元年東日本台風 と名付けられた台風第19号は記録的な大雨に より，東日本を中心に各所で河川の氾濫が生 じ，士砂災害•浸水害に見舞われた。県内を流れる荒川も増水し，川の博物館の敷地は広 く水に覆われ，翌日は敷地内駐車場で，深い ところでは 60 cm の土砂の堆積があるなど，被害の様子が明らかになった。この増水から約 3 年後に土壌断面調査を行い，敷地内の木立 における土砂堆積状況を確認した。同所では 2010年にも土壌断面調査を行っている（森， 2011）。そこで，改めて当館上流側のかわせみ河原から当館（以降かわはくとする）敷地におけ る近年の土砂の堆積状況について，土壌断面調査，空中写真，記録写真を用いて考察する。調査検討した場所の位置関係を図 1 に示す。

図1 土壌断面調査•検討場所の位置関係図

土壌断面調査

2023年2月15日に，川の博物館敷地内の木立（自然植生，図 1 の W 区内）において土壌断面調査を行った。土壌断面記載は土壌調査ハンドブック（日本ペドロジー学会， 2021）に従った。土性はピペット法で測定し た。以下にその結果を記す。
断面記載
A： $0 \sim 5 \mathrm{~cm}$ ，黄褐色（2．5Y5／2），有機物含 む，FS，石礫なし，弱度の小屑粒状構造，乾，草本細根あり，層界平坦明瞭

C：5～22cm，暗オリーブ褐色（2．5Y3／3），有機物なし，LFS，石礫なし，弱度の小屑粒状構造，半湿，草本細根稀にあり，層界平坦明瞭
$2 \mathrm{~A}: 22 \sim 28 \mathrm{~cm}$ ，暗オリーブ褐色（2．5Y3／3），有機物含む，LFS，未風化の小円礫あ り，弱度の小屑粒状構造，半湿，草本小•中根富む，層界平坦明膫
$2 \mathrm{Bw}: 28 ~ 35 \mathrm{~cm}$ ，暗オリーブ褐色（2．5Y3／3）， LFS，未風化の小亜円礫あり，弱度の小屑粒状構造，半湿，草本細根稀にあり，木本細根稀にあり，層界平坦明瞭
$2 \mathrm{BC}: 35 \sim 48 \mathrm{~cm}$ ，暗オリーブ褐色（2．5Y3／3），有機物なし，FSL，未風化の中亜円礫含 む，弱度の小屑粒状構造，半湿，木本中根あり・大根稀にあり，層界平坦明瞭
$2 \mathrm{C}: 48 ~ 60 \mathrm{~cm}$ ，黄灰色（2．5Y5／1），有機物 なし，CoS，未風化の小乃至巨亜円礫土，単粒状構造，半湿，根なし，層界平坦明膫
$3 \mathrm{C}: ~ 60 \sim 84 \mathrm{~cm}$ ，黄灰色（2．5Y4／1），有機物な し，CoS，未風化の小乃至大亜円礫土，単粒状構造，半湿，根なし，層界平坦明瞭 $4 \mathrm{C}: 84 \sim 100 \mathrm{~cm}+$ ，黒褐色（2．5Y3／1），有機物なし，CoS，未風化の小乃至大亜円礫土，単粒状構造，半湿，根なし

断面を観察すると，深さ $22 \sim 25 \mathrm{~cm}$ あたりを上端に，直上の層よりも明らかに根が多い層 が見られた。この層は観察した面の周辺にお いても同様に存在し，2019年10月の洪水前の地表面と判断して 2 A 層（埋没 A 層）とした。

2010年土壌調査との比較

ここで，木立の断面について，層位ならび に石礫の大きさと含量を2010年に行った土壌断面調査と比較した。草地の断面（2010）と あわせて図 2 に示す。今回調査した場所は 2010年に調査した場所と完全に一致しない が，周囲の地面の様子から，数メートル以内 の距離と考えられる。石礫の含量が高いの

図2 土壌断面比較（石礫および層位）
オレンジ色のスケールは地表面からの層の深さ を示す（cm）

が，2010年調査時のC層，今回の調査の 2 C層より下位の層である。特に 3 C 層（2010） と 4 C 層（2023）は，大亜円礫が多く，その隙間に細礫が充填されており（図 3 ），両者 は同一層理と考えられる。両者の上端を合わ せると，それより上位の層は，2 C 層（2010） と 3 C 層（2023）と順に概ね対応し，A 1， A 2 層（2010）と 2 A 層（2023）が対応する ものと判断できる。そして断面周囲の観察も勘案すると，木立の調査地点周辺では2019年 の洪水時に石礫を含まない土砂が 25 cm ほど堆積していることがわかった。石礫の含量は今

図4 土壌断面各層位の土性（各画分の割合）
a．木立 2010 b
b．木立2023
c．草地2010

図 3 木立土壌断面写真
左が2010，右が2023の調査時。破線は 3 C 層 （2010），4 C 層（2023）の上端を示す。
回の調査断面の方が全体に多い傾向にあり， これは微地形に起因するものと考えられる。

また，草地（2010年調査）の断面は，明ら かに石礫が少なく，1mの深さでも中礫以上の大きさが見られなかった。石礫の含量 から，木立断面の 2 BC（2023），Bw（2010） より上部の層と同質の堆積物と考えられる。土性

この層序の対応に合わせて土性を比較する と，2019年の洪水時に堆積した土砂（A 層お よびC層）は，砂含量が 80% を超え，かつ砂中の細砂の割合が $60 \sim 70 \%$ と高かった（図 4 ）。洪水以前の地表面（ 2 A 層）も石礫が少 なく砂質のものが堆積していたが，2019年に堆積したものは，特に細砂が多かったとい

える。 2 A 層（2023）より下位の層は， 2010年，2023年でほぼ同様の傾向が見 られた。

空中写真と記録写真

1940年（陸軍撮影空中写真）1960， 1974，1995年（国土地理院撮影空中写真），2010，2015，2020年（国土地理院空中写真）のかわはく周辺の空中写真を図5に示す。1995年以前の写真に は，荒川大模型が後に建設される場所 を模型の形に青く示している。また，川周辺の地形に大きくかかわる事項と して，国土交通省荒川上流河川事務所 のホームページに掲載の近年の記録的 な洪水と，ダム建設の年代，写真から読み取れる情報などを表1に示した。

1960年（図 5 b）は，かわはくの現在の敷地の一部が後のかわせみ河原と つながる石礫の河原であり，大模型の あたりに帯状に見える植生は，下耕地面の段丘崖である。1940年に陸軍 によって撮影された空中写真（図5a） では，かわはく南側の段丘崖までが広 い石硯の河原とみられ，下耕地面は明確には確認できなかった。

1974年は8月末に洪水の記録があ り，空中写真はその概ね 4 か月後に撮影されたものである（図 5c）。段丘崖 の帯状の植被よりも荒川に近い部分 （G，W 区）は段丘化しており，本流の流 れと石礫の河原は北へ移動している。

1995年（図 5 d）には，G，W 区は荒川際までが植生で覆われている。W区には木立が成立しており，G区は木 がまばらに生えている。なお，ここに は示していないが，1980年撮影（国土地理院）の空中写真には木本の植生が わずかであり，1986年（同上）には木本が成長してきている様子が見られ た。森（2011）にも記しているよう に，このことは2010年当時に伐採したア カシアの年輪が26～27ほどであったこ とと一致する。

かわせみ河原は1960年から1995年にかけ て，上流側はやや拡大し，下流側は縮小して いる。1974年と1995年を比較すると，かわは

図5 後のかわせみ河原から川の博物館の空中写真（出典：国土地理院空中写真を元に作成）
a．1940年陸軍撮影 b．1960年撮影 c．1974年撮影 d． 1995年撮影 後の荒川大模型の位置を青で，かわせみ河原を星印で示している。矢印は段丘崖を示す。

く北側では1974年には荒川が網状に流れてい たのに対し，1995年には中洲となり，その微高地は草地となって樹木もまばらに成長して いる。1998年は，かわはく開館の年である。

図5（続き，国土地理院空中写真） e．2010年 f．2015年 g．2020年

開館前の工事中の写真を見ると（図6），大模型の北側（現•第三駐車場付近）では，ま ばらにあった木本類は概ね残し，草本類は除 かれている。また，W 区の木立はそのまま残っている様子がらかがえる。1999年8月の洪水では大模型下流側の歩道まで冠水した。
現在の第三駐車場は，2000年時点では草地 であった。当時の写真を見ると（図7），大模型北側の草地から奥の木立の北側（G区） に向かって，丈の低い草本に覆われた地面が続いている。この場所は2002年に臨時駐車場 として整備し，塩沢川を越えてかわはく敷地 の東側へ至る道がつけられた。2005年の空撮写真（図 8）から，W区手前のG区には枯 れた草がやや盛り上がり，道から川方向へ は，ゆるやかに傾斜している様子が確認でき

る。2007年 9 月の洪水では，大模型下流側の歩道の少し下まで冠水した（図 9 ）。

2010年に草地を調査した際には，こ の草地（G区）は第三駐車場よりも標高が高く，前項にあるように，1m以上の大きな石礫をほとんど含まない土砂の堆積が見られた。

2010年，2015年，2020年の空中写真 を比較すると（図5e～g），かわせみ河原の北側では2010年に比べて2015年に中洲が発達している様子がわかるが， 2020年にはやや縮小し，かわはく北側 の中洲とつながっていることが確認で きる。また，かわはく北側では，荒川本流は中洲を挟んで枝分かれしている が主流が次第に北側へ移っている様子 が確認できる。

G 区，W 区の土砂堆積時期に関する考察

まず，ダムの影響について考えてお きたいが，1961年の二瀬ダム完成以降，かわはくより上流部では，玉淀ダ ム，浦山ダム，合角ダム，滝沢ダムが建設された（表 1）。これらのらち，玉淀ダムは可動堰型で，流量が1500t／s を超えると水門が全開となり，水門下部はほぼ川底と同じ高さであるので， ダム湖によって礫がせき止められるこ とはない。玉淀ダム以外のダムは，ダ ム湖内に土砂がたまる。したがって，
ダムより上部の流域から供給される礫はほぼ なくなるものの，ダムより下流においても磁 の供給源となる山地面積は十分にあと考え られる。国土技研政策総合研究所（https：／／ www．nilim．go．jp／lab／bcg／siryou／kpr／prn0028pdf／ kp002809．pdf，発行年不明）は，荒川本流の供給土砂量（ダム面積を除く）は，年間 $125,000 \mathrm{~m}^{3}$ と概算している。したがって，1961年に始まる ダム建設以降も，寄居を含む荒川扇状地では，場所によって石磼を含む土砂が堆積する可能性は十分にある。

1960年に石碩の河原であった G，W 区は 1974年には，石礫ではなく，わずかに植生で覆われた様子の地面に変化している。これは この面が段丘化し，荒川水面との比高が高く なって冠水の頻度が下がり植物の生育が可能

表1 主要な洪水とダム建設および空中写真，現場写真から読み取れる情報一覧
主要な洪水は国土交通省荒川上流河川事務所の荒川の歴史を参照している。
玉淀ダムが 1 回以上全開となった年代は○で示している。
○：玉淀全開が 1 回以上 空：空中写真 か：かわはく撮影写真

西暦	和暦	洪水とダム建設	$\begin{array}{\|l\|} \hline \text { 炙淀 } \\ \hline \text { 全閍 } \\ \hline \end{array}$	$\begin{aligned} & \text { 写 } \\ & \text { 真 } \\ & \text { 雖 } \\ & \hline \end{aligned}$	月	$\begin{aligned} & \text { 図 } \\ & \text { 番 } \\ & \text { 号 } \\ & \hline \end{aligned}$	読み取れる情報 （中洲は，言及がなければかわはく北側の中州を指す）
1910	明治43	洪水（不明）					
1917	大正 6	洪水（大正6年9月台風）					
1938	昭和13	洪水（昭和13年8月台風）					
1940	昭和15			空	2	5	後のかわせみ河原～かわはく南側段丘崖まで石礫 の河原であった。
1941	昭和16	洪水（昭和16年7月台風）					
1947	昭和22	洪水（カスリーン台風）					
1958	昭和33	洪水（狩野川台風）					
1960	昭和35			空		5	後の大模型まで付近には下耕地面の段丘崖が認め られる。それよりも北側は石礫の河原である。
1961	昭和36	二瀬ダム完成					
1964	昭和39	玉淀ダム完成					
1965	昭和40		\bigcirc				
1966	昭和41		\bigcirc				
1972	昭和47		\bigcirc				
1974	昭和49	洪水（台風16号，8月）	\bigcirc	空	12	5	本流は北へ膨らみ，中洲が形成される。 G，W区には石礫の河原とは異なる地面が見られる。
1980	昭和55			空	10	－	G，W 区には植被が見られ，木本はまばらに認め られる。中洲が拡大している。
1981	昭和56		\bigcirc				
1982	昭和57	洪水（台風10，16号 8 月）	\bigcirc				
1983	昭和58		\bigcirc				
1984	昭和59		\bigcirc				
1985	昭和60		\bigcirc				
1986	昭和61		\bigcirc	空	10	－	W 区には木本の成長が認められる。
1989	平成元		\bigcirc				
1990	平成 2		\bigcirc				
1991	平成 3		\bigcirc				
1993	平成 5		\bigcirc				
1995	平成 7			空	5	5	G 区の草本の植被，W 区の木立が確認できる。
1996	平成 8		\bigcirc				
1997	平成 9			か		6	工事により G 区の植被は除かれ，W 区の木立は残されている。
1998	平成10	浦山ダム完成	\bigcirc	空			かわはく開館
1999	平成11	洪水（熱帯低気圧 8月）	\bigcirc	か		－	駐車場は冠水し，大模型横の歩道まで増水
2000	平成12			か	9	7	後の第三駐車場と G 区は同じ高さであり，草本 がまばらに繁茂する様子，W 区の自然植生が確認できる。
2001	平成13		\bigcirc				
2002	平成14		\bigcirc				塩沢川の仮設橋と臨時駐車場を整備する。
2003	平成15	合角ダム完成					
2004	平成16						
2005	平成17			か	12	8	G 区は臨時駐車場とほぼ同じ高さで，荒川に向 かってゆるやかに低くなる。
2006	平成18						
2007	平成19	洪水（台風9号9月）	\bigcirc	か		9	駐車場は冠水し，大模型土手やや下まで増水
2008	平成20	滝沢ダム完成					
2009	平成21						
2010	平成22			空		5	本流は中洲より南側 土壌断面調査（木立•草地）
2011	平成23						
2012	平成 24		\bigcirc				
2013	平成25						
2014	平成26						
2015	平成27		\bigcirc	空		5	中洲より北側の流れがやや太くなる。かわせみ河原の前にも中洲ができている。
2016	平成28		\bigcirc				
2017	平成29		\bigcirc				
2018	平成30		\bigcirc				
2019	令和元	洪水（令和元年東日本台風）	\bigcirc				
2020	令和 2			空		5	かわせみ河原北側の中洲は縮小し，かわはく北側 の中洲とつながっている。
2021	令和 3						
2022	令和 4						
2023	令和 5						2 月に土壌断面調査

になったためと考えられ る。この理由として，河床が削られ低下したこと が挙げられる。荒川の水位の変化は寄居町の観測地点において1969年から記録され，国土交通省の ホームページで閲覧でき る（2024年1月10日 閲覧）が，1969年の観測以降，水位は低下傾向にあ り，1960年以降，寄居町 における荒川は，河床が低下傾向にあると考えら れる。

先述の通り，2010年に同じ木立のニセアカシア を伐採しており，1980年代前半からニセアカシア が成長し始めたと考えら れる。木立のある場所 （W 区）は，その少し北側の地面（G 区）に比べ て冠水の頻度が低く，樹木が成長することが可能 な程度に標高が高かっ たと考えられる。つま り，荒川の河床が低くな り，相対的に高くなった W 区には樹木が成長し たが，より荒川に近いG区は2007年までは相対的 に標高が低く，草本や密度の低い木本類のみが生育していたのではないだ ろうか。そうすると，木立の土壌断面に見られた石礫の層は，1960年以前 に堆積した地面と考えら れる。この硯層は，G 区 では低く（削られた可能性もある），さらにゆる やかに荒川まで続いてい たのであろう。草地の断面調査は2010年のみであ るが， $45 \sim 65 \mathrm{~cm}$（ 2 C 層）

図 6 かわはくオープン前のエ事中の写真
大模型が設置途中で，北側の植生と東側の自然植生が見える。

図 8 かわはく上空の空撮写真（2005年12月）
大模型の北側に臨時駐車場（現•第三駐車場），東側に引き込み道路がつくられている。

は粒状構造とわずかながら直上の層よりも高 い全炭素含量があり（森，2011），2007年に堆積したのは，これよりも上位の層（層厚計約 45 cm ）である可能性もある。本稿を進める にあたり調査したところ，塩沢川右岸側に残 る臨時駐車場の看板は，2007年の洪水時に足 が埋まってしまっていた。これを簡易的に調査したところ，洪水前の地面は深さ 55 cm の位置にあった。このことは，この仮説に整合的 である。かわはく工事の際にはG区はかな り整地されていることから（図6），開館後 の1999年の洪水時にもある程度の土砂が堆積

図7 後の第三駐車場のようす（2000年9月）大模型北側（写真中央）は，数本の木と，草本類が見える。東側（写真奥）には自然植生が見える。

図 9 2007年洪水時のかわはくの様子
臨時駐車場が水につかっている。フェンスが倒れており，水の勢いを物語っている。

した可能性もある。
荒川水面からかわはくの大模型までの比高 と，推測される堆積の時系列を図に整理した （図10）。

以上，土壌断面調査，空中写真等から，か わはくの木立と草地を中心に，周辺の土砂の堆積や地形の成り立ちについて考察した。か わせみ河原や，中洲の発達•減衰について は，空中写真で状況をとらえたのみである が，ダムの建設以降も，荒川の河道や土砂の堆積場は，大きな汇濫を契機として変化して いることがわかる。特に注目したかわはく

図10 調査地点から荒川水面までの概略図破線は筆者の仮設である。

の木立と草地では，1974年までに現在の駐車場の面が段丘化して以降は，氾濫時にのみ冠水 し，石礫を含まない土砂の堆積が進んだことが推測される。特に2007年以降は，礫の堆積がな いことが確認できた。かわせみ河原や中洲に おける石礫の堆積や，1960年には広がってい た石礫の堆積状況など，さらに検討する余地 がある。

謝 辞

本稿をまとめるにあたつて，埼玉県立自然の博物館の井上素子氏に助言いただきました。 また，土壌断面調査および土壌分析は東京農業大学の齋藤温子氏にご協力いただきまし た。ここに厚くお礼申し上げます。

引用文献

荒川上流河川事務所ホームページ https：／／ www．ktr．m1it．go．jp／arajo／arajo＿ index010．htm1（2024年1月10日閲覧）
国土技研政策総合研究所，発行年不明。 https：／／www．nilim．go．jp／lab／bcg／ siryou／kpr／prn0028pdf／kp002809．pdf （2024年2月3日閲覧）

日本ペドロジー学会（2021）改訂新版 土壌調査ハンドブック。博友社，東京。
森圭子（2011）川の博物館林地から荒川河原 までの土壌断面報告。埼玉県立川の博物館紀要，11：5－8．

